Membrane localization is not required for Mpl function in normal hematopoietic cells.
نویسندگان
چکیده
Cellular trafficking of growth factor receptors, including cross-talk among receptors at the cell surface, may be important for signal transduction in normal hematopoietic cells. To test this idea, the signaling domain of Mpl (the thrombopoietin receptor) was targeted to the plasma membrane, or to the cytoplasm of murine marrow cells, and the ability of the cells to proliferate and differentiate in response to Mpl dimerized at the plasma membrane or free in the cytoplasm was assessed. Constructs encoding the signaling domain of Mpl linked to an FK506 binding protein domain (to permit dimerization by the membrane-permeable ligand AP20187) with or without a myristylation sequence (to target the receptor to the plasma membrane) and a hemagglutinin epitope tag were generated and introduced into murine marrow cells using a murine stem cell virus (MSCV)-based retroviral vector. Both populations of transduced marrow cells proliferated in Iscoves modified Dulbecco medium-10% FCS-100 nM AP20187 without exogenous growth factors for more than 100 days and achieved greater than a 10(7)-fold expansion of cells by day 50 (n = 4 transductions). Growth was dimerizer dependent, and myeloid, erythroid, and megakaryocytic progenitors were generated. Activation of Mpl either at the plasma membrane or in the cytoplasm allowed for the terminal maturation of transduced progenitor cells. Introduction of membrane-targeted or cytoplasmic Mpl into fetal liver cells from homozygous JAK2 knock-out mice or wild-type littermates demonstrated that both forms of Mpl require JAK2 for signaling. These data show that the activation of Mpl independent of its normal plasma membrane location can support production of the full range of normal hematopoietic progenitor cells in vitro.
منابع مشابه
The Mpl receptor is expressed in the megakaryocytic lineage from late progenitors to platelets.
The Mpl receptor (Mpl-R) is a cytokine receptor belonging to the hematopoietin receptor superfamily for which a ligand has been recently characterized. To study the lineage distribution of Mpl-R in normal hematopoietic cells, we developed a monoclonal antibody (designated M1 MoAb) by immunizing mice with a soluble form of the human Mpl-R protein. With few exceptions, Mpl-R was detected by indir...
متن کاملCharacterization of Mpl mutants using primary megakaryocyte-lineage cells from mpl(-/-) mice: a new system for Mpl structure-function studies.
Mpl is the thrombopoietin (TPO) receptor. The current molecular understanding of how Mpl activation stimulates proliferation of megakaryocyte-lineage cells is based largely on the engineered expression of Mpl in nonmegakaryocyte-lineage cell lines. However, the relevance of these findings to Mpl signaling in primary megakaryocyte-lineage cells remains largely unknown. Therefore, a system was de...
متن کاملCharacterization of Mpl mutants using primary megakaryocyte-lineage cells from mpl2/2 mice: a new system for Mpl structure–function studies
Mpl is the thrombopoietin (TPO) receptor. The current molecular understanding of how Mpl activation stimulates proliferation of megakaryocyte-lineage cells is based largely on the engineered expression of Mpl in nonmegakaryocyte-lineage cell lines. However, the relevance of these findings to Mpl signaling in primary megakaryocyte-lineage cells remains largely unknown. Therefore, a system was de...
متن کاملExtracellular Domain N-Glycosylation Controls Human Thrombopoietin Receptor Cell Surface Levels
The thrombopoietin receptor (TpoR) is a type I transmembrane protein that mediates the signaling functions of thrombopoietin (Tpo) in regulating megakaryocyte differentiation, platelet formation, and hematopoietic stem cell renewal. We probed the role of each of the four extracellular domain putative N-glycosylation sites for cell surface localization and function of the receptor. Single N-glyc...
متن کاملCongenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 98 7 شماره
صفحات -
تاریخ انتشار 2001